SFA 309LSI

Description

SFA 309LSI is a G 23 12 LSi/ER 309LSi type solid MAG welding wire, supplied precision layer wound, depositing a low C-23Cr12Ni weld metal. Suitable for use with Ar+2%O2 or Ar+0.5...5%CO2 mixed shielding gases.

SFA 309LSi is used for the welding of stainless steels to mild and medium tensile steels. It is used for depositing intermediate layers on steel prior to depositing 308 grade stainless steel. Also used for the welding of clad steels where service temperatures are below 300°C. The weld metal has a delta-ferrite content of ~12% resulting in a high resistance to hot cracking. The increased silicon content results in increased weld pool fluidity to give a smooth deposit appearance. Precision layer winding technologies ensure smooth, virtually trouble-free feeding.

312 TP309S; carb	on stee	l to stai	inless ste	eels joint.		AWS	A 5.9 : El	R 309LSi		EN ISO 14	343 : (G 23 12 L
pical weld m	netal c	chemi	cal cor	mposit	ion (%)	_						
С	Mn		Si	Cr	Ν	li	Мо	C	u	S		Р
0.030 max 1.50) - 2.50	0.65	- 1.00	23.00 - 25	5.00 12.00 -	- 14.00).75 max	0.75	max.	0.03 m	ax.	0.03 ma
ll weld metal	meca	nical	proper	rties (ty	ypical)							
Yield Strength (N/mm2)		Tensile Strength (N/mm2)			yth	E	Elongation A5 (%)			Impact energy ISO-V(J) 20°C		
≥350				≥520			≥30%			≥́	100	
IG welding can be ad positional welc ood result in varyi orrosion res prresponding to E urrent condi	ling. Spi ng plate istan R308LS	ray arc e thickn CE Si, i.e. fa	increase esses in	s the dep all positi	oosition rate ons. The hig	e. Welding ghest flexi tions such	with pu bility us	lsed arc g ing pulse	ives ex d arc is	cellent po achieved	ossibil I with	ities for a 1.20 mm
od positional weld bod result in varyi orrosion res prresponding to E urrent condi	ling. Spi ng plate istan R308LS	ray arc e thickn CE Si, i.e. fa	increase esses in	s the dep all positi	oosition rate ons. The hig	e. Welding ghest flexi tions such	with pu bility us as oxic age	lising and	ives ex d arc is cold d	achieved	ossibil I with	ities for a 1.20 mm
orrosion resonance of the second seco	ling. Sping plate istan R308LS tions	ray arc e thickn ce Si, i.e. fa	increase esses in airly good	s the dep all positi	oosition rate ons. The hig	e. Welding ghest flexi tions such	with pu bility us as oxic age	lsed arc g ing pulse	ives ex d arc is cold d	achieved	ossibil I with	ities for a 1.20 mm
od positional weld bod result in varyi orrosion res prresponding to E urrent condi	ling. Sping plate istan R308LS tions	ray arc e thickn ce Si, i.e. fa	increase esses in airly good	s the dep all positi	oosition rate ons. The hig	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and	lising and	ives ex d arc is cold d	achieved	ossibil I with	ities for a 1.20 mm
orrosion resonance of the second seco	ling. Sping plate istan R308LS tions	ray arc e thickn ce Si, i.e. fa	increase esses in airly good	s the dep all positi	oosition rate ons. The hig	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame	lising and	ives ex d arc is cold d	achieved	ossibil I with cing a	ities for a 1.20 mm
orrosion reso orrosion reso orresponding to E urrent condi C (+) Operating ran	ling. Sping plate istan R308LS tions d welc ge	ray arc e thickn ce Si, i.e. fa	increase esses in airly good	s the dep all positi	evere condi	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame	lising and avoid cor	ives ex d arc is cold d	ilute reduction	cing a	ities for a 1.20 mm
orrosion resorresponding to E urrent condi c (+)	ling. Sping plate istan R308LS tions d welc ge	ray arc e thickn Ce Si, i.e. fa Jing d	increase esses in airly good ata	s the dep all positi	evere condi 0.8 40~120 15~20	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame 80	lising and avoid cor ter (mm)	ives ex d arc is cold d	tion	cing a	ities for a 1.20 mm
orrosion resonance of the second result in varying or responding to the second resonance of the second of the seco	ling. Sping plate istan R308LS tions d welc ge 2	ray arc e thickn Ce Si, i.e. fa Jing d	increase esses in airly good airly good airly good nirly good airly good airly good airly good	s the dep all positi	oosition rate ons. The hig evere condi 0.8 40~120 15~20 160~210	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame 80 16 18(lising and avoid cor ter (mm) 1.0 ~160 5~22 0~280	ives ex d arc is cold d	tion 100~2 200~3	cing a cing a 2 210 22 300	ities for a 1.20 mm
orrosion resources of the second seco	ling. Sping plate istan R308LS tions d welc ge 2	ray arc e thickn Ce Si, i.e. fa Jing d	increase esses in airly good aira mp /olt	s the dep all positi	evere condi 0.8 40~120 15~20	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame 80 16 18(lising and avoid cor ter (mm) 1.0 ~160 5~22	ives ex d arc is cold d	tion 1.2 100~2 17~2	cing a cing a 2 210 22 300	ities for a 1.20 mm
orrosion res orrosion res orresponding to E urrent condi C (+) ecommended Operating ran Ar+1~2%CO Ar+1~2%O2	ling. Sping plate istan R308LS tions d welc ge 2	ray arc e thickn Ce Si, i.e. fa Jing d	increase esses in airly good airly good airly good nirly good airly good airly good airly good	s the dep all positi	oosition rate ons. The hig evere condi 0.8 40~120 15~20 160~210	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame 80 16 18(lising and avoid cor ter (mm) 1.0 ~160 5~22 0~280	ives ex d arc is cold d	tion 100~2 200~3	cing a cing a 2 210 22 300	ities for a 1.20 mm
orrosion resources of the second result in varying or responding to the second resources of the second of the seco	ling. Sping plate istan R308LS tions d welc ge 2	ray arc e thickn Ce Si, i.e. fa Jing d	increase esses in airly good airly good airly good nirly good airly good airly good airly good	s the dep all positi d under se	oosition rate ons. The hig evere condi 0.8 40~120 15~20 160~210	e. Welding ghest flexi tions such	with pu bility us a as oxic age dry and Diame 80 16 18(lising and avoid cor ter (mm) 1.0 ~160 5~22 0~280	ives ex d arc is cold d densat	tion 100~2 200~3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ities for a 1.20 mm

12.50/15.00 12.50/15.00 12.50/15.00 12.50/15.00 12.50/15.00 12.50/15.00 12.50/15.00 Weight (kg)

Welding positions

